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Abstract— Emerging mobile applications enable people to
connect with one another more easily than ever, which causes net-
worked systems, e.g., online social networks (OSN) and Internet-
of-Things (IoT), to grow rapidly in size, and become more
complex in structure. In these systems, different, even conflicting
information, e.g., rumor v.s. truth, and malware v.s. security
patches, can compete with each other during their propagation
over individual connections. For such information pairs, in which
a desired information kills its undesired counterpart on contact,
an interesting yet challenging question is when and how fast
the undesired information dies out. To answer this question,
we propose a Susceptible-Infectious-Cured (SIC) propagation
model, which captures short-term competitions between the two
pieces of information, and define extinction time and half-life
time, as two pivots in time, to quantify the dying speed of
the undesired information. Our analysis revealed the impact of
network topology and initial conditions on the lifetime of the
undesired information. In particular, we find that, the Cheeger
constant that measures the edge expansion property of a network
steers the scaling law of the lifetime with respect to the network
size, and the vertex eccentricities that are easier to compute
provide accurate estimation of the lifetime. Our analysis also
sheds light on where to inject the desired information, such that
its undesired counterpart can be eliminated faster.

Index Terms— Information propagation, conflicting informa-
tion, epidemic models, network dynamics.

I. INTRODUCTION

DUE to proliferating mobile devices and emerging mobile
applications, people are more connected with each other

than ever. Consequently, networked systems, such as online
social networks (OSN), institutional computer networks, and
Internet-of-Things (IoT), are developing into much larger and
more complex structures than before. For instance, the OSN
giant Facebook has 1.6 billion daily active users, who generate
more than 4 PetaByte new data every day [1], while the
number of IoT devices is expected to exceed 500 billion by
2030 [2], imposing a tangible impact on mobile data traffic.
As more and more individuals, e.g., users in OSN, and devices
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in IoT, join such systems, inconsistent, even conflicting infor-
mation are injected into the network, leading to an interesting
competition among different pieces of information.

By conflicting, we mean two pieces of information that can
not be admitted by the same individual at the same time.
For example, it is highly unlikely, if not impossible, for an
OSN user to simultaneously admit the truth and a rumor that
contradicts with the truth. Particularly for such pairs, in which
one piece (the desired information, e.g., truth) is apparently
more credible than the other (the undesired information, e.g.,
a rumor), an individual who has chosen to admit the desired
information, will not be affected by its undesired counterpart.
Therefore, the undesired information, spreading via individual
connections itself, will be eliminated from the network (die
out) by its desired counterpart, given sufficient time. In other
words, the competition between the conflicting information
pair takes place in finite time. Naturally, we ask: when, and
how fast will the undesired information die out?

A. Motivating Examples

The phenomenon of conflicting information propagation is
prevalent in OSNs, which has become the arena of clashing
opinions, unverified reports, and publicity campaigns. For
example, after the Boston bombing incident on April 15th,
2013, Reddit users started an online suspect hunt, which iden-
tified an innocent person as the bomber [3]. This rumor (unde-
sired information in the form of image data) spread rapidly on
both Reddit and Twitter, leading to serious cyber-harassment
to the wrongly-accused. The number of mentions regarding
this rumor quickly decreased after the police released the
correct information (desired information) [4]. Before the rumor
dies out completely, its impact, harassment to the wrongly-
accused, as well as posts and clicks from users, will not
disappear, so answer to the ‘when and how fast’ question
directly characterizes the data traffic in the system over time.

On the other hand, such competing-while-spreading phe-
nomenon can also be observed in engineered systems, such as
computer networks for an institution, and IoT. For instance,
to eliminate a computer malware (undesired information in
the form of source code), such as SMS Trojans [5] that
spreads over emails and messages, and Chameleon [6] that
spreads over WiFi links, the system administrator can distrib-
ute self-replicable security patches (desired information) to
‘cure’ malware-infected devices, and ‘immune’ devices that
have not been reached by the malware. In IoT, on the other
hand, faults (undesired information) can quickly propagate due
to the interdependence of data/power between devices, leading
to a cascade-of-failures, while restoration operations (desired
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information) on some devices, e.g., load-shedding, will also
trigger/enable the recovery of faulty devices that are connected
to restored devices, gradually bringing the system back to
normal operations. In these examples, desired information is
proactively injected by the administrator as a countermeasure
against malware or cascade-of-failures. In this sense, answer to
the ‘when and how fast’ question also measures how effective
a countermeasure is, in controlling the undesired information
from epidemic spreading.

These conflicting information propagation processes have
two defining characteristics: First, there are two pieces of
information circulating the same network, both spread via con-
tacts of individuals in an epidemic manner. Second, the later-
injected desired information can convert victims of the unde-
sired information back to normal states, just like a replicable
antidote can cure/immune an individual from an infectious
virus, as a result of which, the cured/immune individual will
not be infected by the same virus again, but not vice versa.
Our objective is to find out when and how fast the virus dies
out in the network, after the injection of antidotes.

B. Related Work

Considering the resemblance between information spread
over individual connections, and virus spread over individual
contacts, information propagation has been extensively studied
via epidemic models, in which information is modeled as an
infectious virus. Based on the number of information pieces
considered, existing literature can be broadly categorized into
single-virus epidemics, and competing epidemics. However,
none of existing approaches can describe the short-term com-
petition between the virus and antidote.

Existing research on single-virus epidemics focus on propa-
gation model [7], [8], epidemic threshold [9], [10], dependency
on network topology [11]–[13] and epidemic control with
non-self-replicable antidotes [12], [14]. However, these models
only consider one piece of the information in the spreading
process, and are hence not applicable to our problem. In fact,
a single-virus epidemic is a special case of the conflicting
information propagation process discussed in this paper, in the
sense that the virus spreads to every corner of the network,
and lives forever without any injection of antidote.

With respect to competing epidemics between conflicting
information, existing literature can be further categorized into
population dynamics and network dynamics [15], depend-
ing on whether network topology is taking into considera-
tion. In population dynamics, participants of the propagation
process are assumed to be a well-mixed population, i.e.,
there is no notion of network, which does not apply to most
propagation scenarios. In contrast, network dynamics view
participants of the propagation process as heterogeneous, and
model their connections with a graph structure. Among these,
Lin et al. [16] utilized Mean-Field Approximation (MFA) to
conduct asymptomatic and numerical analysis of the propaga-
tion process. Prakash et al. [17] proposed an SI1I2S model,
and proved that a piece information with faster propagation
speed will eliminate its slower counterpart as time approaches
infinity. More recently, Dadlani et.al.. modeled competing
memes as epidemic processes on multi-layered graphs, and

derived critical survival threshold of a meme [18] to be
persistent. Newman [19] found the coexistence threshold of
two competing epidemics on networks with known degree dis-
tributions, under Susceptible-Infected-Recovered (SIR) model.
From the perspective of propagation model, both the linear
threshold model and SI1I2S model allow any individual to
switch back and forth between different information, in which
context the asymptotic behavior (steady state of the system
as time t → ∞) of the dynamics is of more interest. In our
case, however, the desired information is much more credible
than its undesired counterpart, so competition between the two
finishes in finite time. Consequently, the answer to our research
question depends on transient changes of individual states,
to which existing analysis on asymptotic behavior does not
apply.

C. Summary of Contributions

Seemingly simple, the when and how fast question is
actually challenging because of the short-term competition
between conflicting information, and the possibly complex
network topology of the system. First, answer to this question
depends on occurrences of transient events, analysis of which
involves time and is hence difficult. Second, the underlying
network can be large, complex, or both, considering the broad
applications of this problem, for which simple propagation rule
at node level gives rise to complicated behavior of the system
as a whole. Therefore, we need to identify useful topological
properties of the network that can best answer the question,
but are also accessible in practice for complex networks.

To address these challenges, contributions of this paper can
be summarized as follows.

1) Modeling: We propose a novel SIC propagation model,
to capture the competing and epidemic nature of a con-
flicting information pair in their propagation processes.

2) Metrics: We define new metrics, namely the extinction
time τe and half-life time τ 1

2
, as two pivots in time,

to quantify how fast the virus dies.
3) Findings: We derive bounds of the expected extinction

time E(τe) and half-life time E(τ 1
2
) for network G with

an arbitrary topology, and find that:
• Both E(τe) and E(τ 1

2
) are O( log n

η(G) ), where n is
the network size, and η(G) is the Cheeger con-
stant measuring the level of bottleneck-ness of G.
It indicates that the undesired information dies out
slower in larger networks with bottlenecks (η(G) ≤
O(log n)), e.g., networks with star topology. In con-
trast, the extinction time decreases with n when
η(G) is bounded below by log n.

• Considering η(G) is difficult to obtain (NP-hard)
for general networks, we show that the lifetime
of the undesired information can also be upper
bounded by functions of vertex eccentricities. These
bounds enable us to estimate the extinction time in
large complex networks, and also imply where to
inject desired information such that its undesired
counterpart can be eliminated faster.
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The rest of the paper is organized as follows. First we
introduce the SIC propagation model in Section II, followed by
metrics definitions and problem formulation for a conflicting
information propagation process. Then we study SIC epi-
demics on networks of two special topologies, i.e., clique and
star, in Sec. III. Based on the observation of these preliminary
results, we identify two topological properties, namely, graph
expansion and vertex eccentricity, by which we derive bounds
for networks with arbitrary topology in Sec. IV, and provide
practical guidelines on selecting antidote recipients to control
the epidemic of undesired information. Finally, the paper is
concluded in Sec. V.

II. THE SIC PROPAGATION MODEL

In this section, we introduce terminologies, assumptions
and definitions of the Susceptible-Infected-Cured (SIC) prop-
agation model, to capture the competition between a pair of
conflicting information, referred to as a virus and an antidote,
both of which propagate in an epidemic manner. This dynamic
process takes place in a network, whose vertices represent indi-
viduals, e.g., devices in IoT, and edges represent connections,
e.g., wireless links between devices. Based on the SIC model,
we then formally define metrics to quantify the dying speed
of the undesired information (virus), as the expected answers
to the proposed when and how fast questions.

A. Conflicting Information Pair: Virus x and Antidote ax

Conflicting information has been defined as “two pieces
of text that are extremely unlikely to be considered true
simultaneously” in relevant information collection studies [20].
Considering that information takes various forms other than
text, such as source code, operating status of devices, and
commands, we extend this definition to mutually-exclusive
information that can not be possessed/admitted by the same
individual at the same time. Particularly, we focus on a virus-
antidote pair, in which the desired information (referred to as
antidote ax) is of dominant credibility/power over its undesired
counterpart (referred to as virus x), such that it kills the virus
if they are both present on the same vertex, but not vice versa.

Note that virus x can not re-infect an individual, who has
admitted antidote ax, which is different to the symmetric
setting in existing models [17], [21], where virus x can
re-infect an individual who already has ax, so ax is treated
as another virus, instead of an antidote to x. The rationale
behind the asymmetry in our model comes from observations
in real-world examples and concerns on modeling accuracy.
First, for the case of security patch v.s. computer malware, and
restoration commands v.s. (cascading) faulty status, the desired
information (e.g., security patch) is injected purposely by the
system to eliminate the undesired information (e.g., malware),
and it is only reasonable that a malware can not leverage a
fixed bug to attack the system. Second, for the case of clashing
opinions and adoption of different products, once an individual
is convinced (infected) by the newer and better product ax,
it is unlikely for him/her to switch back to the older product
x, unless the older product has an upgrade (to the newest
version) bx. This new injection of bx is considered as the

Fig. 1. State transitions of the SIC epidemic model.

beginning of a new epidemic process with bx as the antidote
to virus ax in our model. In the SI1 · · · IkS model, bx and
x are considered as the same virus competing with ax, such
that re-infection (or switching-back from ax to x) is allowed,
because of its focus on long-term (time t → ∞) behaviors.
A drawback of the existing approach, e.g., [17], [21], is that bx

and x are automatically associated with the same propagation
speed. Our approach, on the contrary, allows x, ax, bx to have
different propagation speeds, capturing competitions of both
ax v.s. x, and bx v.s. ax, and is hence more accurate.

B. Network Model G(V , E)

The network is described as a graph G(V , E), where vertex
set V corresponds to the set of individuals in the system, and
edge set E corresponds to the set of connections between any
of two individuals. An edge e(i, j) exists when vertex i and
j can directly exchange information. For any vertex v ∈ V ,
its neighborhood N (v) := {u ∈ V| (u, v) ∈ E} is defined
as the set of vertices that is directly connected to vertex v.
We make the following assumptions of the network G: i) It
is undirected, that is, edge e(i, j) = e(j, i) identifies mutual
connections between vertices i and j. ii) It is connected, such
that information (x and ax) can spread to every vertex in V .
iii) It is static, that is, both size n := |V| and topology of the
network remain the same during the epidemic evolution.

C. Epidemic Propagation Process

Both virus x and antidote ax spread in an epidemic manner.
To describe this epidemic process, each vertex is associated
with a state that can change over time.

1) State Transitions: Let r.v. Xx
v (t) : Ω → Λ = {0, 1, −1}

denote the state of vertex v ∈ V at time t. Values of Xx
v

correspond to different nodal states, as shown in Fig. 1.
Susceptible at time t: The default state Xx

v (t) = 0 (white
circle with letter S in Fig. 1 indicates that neither the virus
x nor the antidote ax has reached vertex v by time t, so it is
possible for v to be infected by x, or cured/immunized by ax

in the future, if any of them propagates to v via contacts.
Infected at time ti: If a copy of virus x reaches susceptible

vertex v at ti, v becomes infected at ti, which means Xx
v (ti) =

1 and limt→t−i
Xx

v (t) = 0. This infect action is shown by the
dashed arrow from susceptible state to the infected state (red
circle with letter I) in Fig. 1. At this state, vertex v will try
to infect, i.e., pass copies of virus x to any of its susceptible
neighbors, that is, u ∈ N x

S (ti, v) = {u ∈ N (v)|Xx
u (ti) = 0},
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Fig. 2. An example of an SIC epidemics on a network of 12 vertices.

Fig. 3. Illustration of the extinction time τe and half-life time τ 1
2

of the
virus for the example shown in Fig. 2: At time t0, C0 = 1 copy of antidote
is injected into the network.

after a random period of time sx
v(u). Vertex v will stay in

infected state until it receives a copy of antidote ax.
Cured at time tc: If at tc, a copy of antidote ax reaches

vertex v (solid arrows in Fig. 1) for the first time, i.e.,
limt→t−c Xx

v (t) ≥ 0, the state of v changes to cured at tc,
that is, Xx

v (t) = −1, as shown as the blue circle with letter C
in Fig. 1. At this state, vertex v will pass copies of antidote to
any u of its neighbors N x

NC(t, v) = {u ∈ N (v)|Xx
u (ti) ≥ 0}

after a random period of time sax
v (u). Vertex v will stay cured

for the rest of the time, i.e., Xx
v (t) = −1 for any t > tc.

Fig. 2 shows an example of a simple network with 12 ver-
tices under an SIC dynamics. As shown in Fig. 2(a), before
antidote ax is injected into the network at time t0, vertices
in {v1, v2, v3, v5, v9, v11} are infected (colored in red). Then
at t0, one unit of antidote is given to vertex v8, and cures it
immediately (indicated as blue), as shown in Fig. 3(b). As time
t proceeds, states of the 12 vertices change in Fig. 3(c-e).
Eventually, the virus dies out at time t = t0 + τe.

2) Propagation Rules: Individual state changes are driven
by the propagation of virus x and antidote ax, whose
speeds are controlled by intervals {sx

u(v)}v∈NS(t,u) and
{sax

u (v)}v∈NNC(t,u). To make this problem tractable, we fol-
low the convention in [13], [17] and assume time homogeneity
for the propagation process: For any vertex u, random intervals
{sx

u(v)}v∈NS(t,u) and {sax
u (v)}v∈NNC(t,u) are two groups of

r.v.’s satisfying i) pairwise independent; and ii) exponentially
distributed with parameters βx

u,v and γx
u,v, respectively.

From the perspective of time, βx
u,v = βx

v,u is known as the
virulence (or infection rate) of virus x, while γx

u,v = γx
v,u as

the curing rate of antidote ax, representing how frequently a
copy of virus x and antidote ax is exchanged via edge e(u, v),
respectively. We give their formal definitions as follows.

Definition 1: For an infected vertex u, and a susceptible
vertex v ∈ N x

S (t, v), the virulence of virus x on edge e(u, v)
is defined as

βx
u,v := lim

t→0+

P(sx
u(v) ≤ t)

t
, (1)

where sx
u(v) is the time period between the infection of u,

and the time when u passes a copy of virus x to v vie edge
e(u, v).

Definition 2: For a vertex u in cured state, and its neighbor
v ∈ N x

NC(t, v), the curing rate of antidote ax on edge e(u, v)
is defined as

γx
u,v := lim

t→0+

P(sax
u (v) ≤ t)

t
, (2)

where sax
u (v) is the time period between the curing of u, and

the time when u passes a copy of antidote to v vie edge e(u, v).
From the perspective of probability, βx

u,v is also known
as the infection probability over unit time, which can be
explained by considering a simple network composed of two
connected vertices, i.e., V = {u, v}. At time t, given Xx

v (t) =
0, the probability that v gets infected by u in Δt is

P

(
Xx

v (t + Δt) = 1|Xx
v (t) = 0

)
= Δt · βx

u,v · 1{Xx
u(t)=1} + o(Δt), (3)

where r.v. sx
u(v) ∼ Exp(βx

u,v), with mean E(sx
u(v)) =

1
βx

u,v
. Similar results also apply to r.v. sax

u (v) and cur-
ing rate γx

u,v. Therefore, when the time interval is of unit
length, i.e., Δt = 1, the state transition probability P

(
Xx

v (t +
Δt) = 1|Xx

v (t) = 0
)

= P(sx
u(v) ≤ t) = βx

u,v equals
to the infection rate βx

u,v in value, which bridges the gap
between continuous-time modeling/analysis and discrete-time
simulations.

At any time t, vertices set V = Sx(t)∪Ix(t)∪Cx(t), where
Sx(t), Ix(t), Cx(t) are mutually disjoint sets: the susceptible
set Sx(t) := {v ∈ V : Xx

v (t) := 0}, the infected setIx(t) =
{v ∈ V : Xx

v (t) := 1}, and the cured set Cx(t) = {v ∈
V : Xx

v (t) = −1}. Evolution of an SIC epidemic process
can be captured by the time-varying infection count, Ix(t) :=
|Ix(t)|, and the cured count, Cx(t) := |Cx(t)|. For the ease of
notation, we suppress x in Xx

v (t), Sx(t), Ix(t), Cx(t), and
write Xv(t), S(t), I(t), C(t) instead.

D. When and How Fast Will the Virus Die Out?

From the state transition diagram (Fig. 2) of the SIC
epidemics and the fact that network G is connected, it is clear

Authorized licensed use limited to: N.C. State University Libraries - Acquisitions & Discovery  S. Downloaded on March 27,2020 at 11:30:09 UTC from IEEE Xplore.  Restrictions apply. 



This article has been accepted for inclusion in a future issue of this journal. Content is final as presented, with the exception of pagination.

WANG et al.: MODELING AND ANALYSIS OF CONFLICTING INFORMATION PROPAGATION IN A FINITE TIME HORIZON 5

that eventually the virus will be eliminated from G, i.e., as time
t → ∞, state Xv(t) = −1 for every vertex v. The question is
when and how fast the virus dies out. In other words, we need
to examine short-term transitions of individual states, which
all take place in finite time. To answer this question, we define
two pivots in the lifetime of virus x to quantify its dying speed.

Definition 3: For an SIC dynamic of virus x and antidote
ax, the extinction time of virus x, denoted as τe, is defined
as the length of the time interval between t0 and the first time
that the infected set I(t) becomes empty, that is,

τe := inf{t > t0 : I(t) = φ} − t0, (4)

where t0 is the time instant when C0 copies of antidote ax

are injected into the network G.
The extinction time τe is a finite1 r.v. on measurable space

(Ωn, 2Ωn

, P). It answers when the virus dies out, because time
instant t0 + τe marks the end point of the virus’s life in G.
In other words, the infection count decreases from I(t0) to
0 during a time interval of length τe, so we know the virus
(undesired information) dies out at an average speed of I(t0)

τe
.

But it is still not clear how such speed changes during the
lifetime of the virus, i.e., how fast the virus dies out, which
answers a lot of realistic questions, e.g., when will the majority
of individuals be free of the undesired information? To answer
this question, we identify another pivot in time.

Definition 4: For an SIC dynamic of virus x and antidote
ax, the half-life time of the virus epidemic, denoted as τ 1

2
,

is defined as the length of the time interval between t0 and
the last time that event {I(t) ≥ 1

2I(t0)} happens after t0, that
is,

τ 1
2

:= sup
{
t ∈ [t0, t0 + τe] : I(t) ≥ 1

2
I(t0)

}− t0, (5)

where I(t0) > 0 is the initial infection count at t0.
The Half-life time τ 1

2
: Ωn → [t0, t0+τe] is also a finite r.v.

on the same measurable space as r.v. τe. The term half-life is
originally from Chemical Kinetics, which describes the decay
of discrete entities. But, unlike in Chemical Kinetics, where
half-life is the mean, we define half-life as the actual time
interval until event {I(t) ≥ 1

2I(t0)} happens for the last time.
The physical meaning of τ 1

2
can be explain as follows: the

competition between the undesired information and its desired
counterpart mainly takes place before pivot time t0 +τ 1

2
, after

which the undesired information can be viewed as controlled,
because the number of its victim will never exceed the
threshold I(t0)/2.

In this sense, the two lifetime metrics, extinction time
τe and half-life time τ 1

2
, illustrate how fast the virus dies,

because for a fixed initial condition (I(t0) and C(t0)),
the larger the gap τe − τ 1

2
, the faster the undesired infor-

mation dies during its most hazardous phase [t0, t0 + τ 1
2
].

Consequently, if desired information is purposely injected
by the system as a countermeasure against the undesired
information, its effectiveness can be reflected by these lifetime
metrics.

1To be more accurate, r.v. τe is almost surely (a.s.) finite, that is, P(τe <
∞) = 1, when the network G is connected, because it can be written as the
summation of a finite number of exponential r.v.’s, each of which is a.s. finite.

Fig. 3 illustrates the extinction time and the half-life time
for the example of the SIC dynamics shown in Fig. 2, where
a red arrow corresponds to an infection, and a blue one
represents a curing event. At t0+τ 1

2
, the infection count of the

system drops to 3 (= 1
2I0), and never exceeds 3 again, which

implies that the virus epidemic has been restricted to a limited
area, or equivalently, under control. At t0 + τe, the virus dies
out.

Without loss of generality, let t0 = 0, and denote I(0)
as I0 (and C(0) = C0) for the ease of notation. All the
events we discuss hereafter take place in the observation
window [0, τe]. We further assume that both the infection rate
β and curing rate γ are constant on every edge of the net-
work, which is commonly adopted in information propagation
studies.

Under the proposed SIC model, we restate our research
question as follows: Consider a pair of conflicting information
(x, ax), in which x is the virus with virulence β, and ax is
the antidote with curing rate γ. At time t = 0, C0 copies
of antidote are distributed in network G(V , E), when the
infection count equals to I0. What is the expected extinction
time E(τe) and half-life time E(τ 1

2
) of virus x (undesired

information)?

III. CONFLICTING INFORMATION PROPAGATION IN

COMPLETE NETWORKS AND STAR NETWORKS

There are three sets of defining factors, which control the
spreading behavior and hence the lifetime of the undesired
information in an SIC dynamics: propagation parameters
(β, γ), initial condition (I0, C0), and topological properties
of network G. Among these, the key challenge arises from
the underlying network G, a structure with numerous topo-
logical properties, some of which are of particular impor-
tance to the epidemic spreading of information, as evidenced
in [11], [13], [19]. To answer the when and how fast question
for conflicting information propagation in an unspecified,
and possibly complex, network G, we start from simple
cases, in which G has special topologies, in order to clarify
which topological properties to consider for more general
cases. Specifically, we examine complete graph Kn and star
graph Sn, which are not only common network topology them-
selves, but also essential components of complex networked
systems.

A. SIC Epidemics on Complete Networks Kn

A complete graph Kn, is a fully connected graph with n
vertices, in which for any pair of vertices vi, vj ∈ V (Kn), i 	=
j, there exists an edge e(i, j) ∈ E(Kn) between them, and
hence |E(Kn)| = n(n−1)/2. This topology is frequently seen
in networks that require high reliability, e.g., network of AS
routers, or networks that are densely connected everywhere,
e.g., a household or a community, where every individual
is familiar with one another. It has two key characteristics:
i) it is the most densely connected simple graph, because
it has the maximum number of edges; ii) it is regular,
because every vertex is inter-changable with another, which
means they have the same vertex metrics, such as degree and
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centrality. In such networks, the expected lifetime metrics of
the undesired information are upper bounded by the following
theorem.

Theorem 1: Consider an SIC dynamics in action on a
complete network Kn, with curing rate γ, and initial condition
(I0, C0). The expected extinction time E(τe) and half-life time
E(τ 1

2
) of the virus can be bounded above as

E(τe) <
1

γn

[
2 + ln

(n − 1)(n − C0)
C0

]
, (6)

E(τ 1
2
) <

1
γn

[
2 + ln

(n − 1)(n − 1 − 
I0/2�)

I0/2�+ 2

]
; (7)

when C0 ≥ 2, we also have

E(τe) <
2

γ(n − 1 + C0)
ln(n − C0), (8)

E(τ 1
2
) ≤ 2

γ(n − 1 − 
I0/2�+ C0)

(
1 + ln

n − C0


I0/2�+ 1

)
,

(9)

where n = |V| is the size of the complete network Kn.
Proof of Theorem 1 can be found in Appendix A.
Theorem 1 implies that both the expected extinction time

and half-life time decreases with size n of the clique as
O( log n

n ), which means the larger the network, the quicker
the undesired information dies, given the same initial condi-
tion of the dynamics. The reason behind this is that, dense
connections among vertices make it difficult for the virus to
dodge contact with antidotes. In other words, even though
both virus and antidote can spread faster due to the large
number of edges, dense connections work in favor of the
antidote propagation. On the other hand, with respect to the
severeness of virus infection upon antidote injection, we can
see the half-life time decreases with the initial infection count
I0 as O(log A

I0
), where A is a function of n and C0 that

does not vary with I0. It shows that the severer the infection,
the less time it takes to get the virus epidemics under control.
In this case (larger I0), the larger gap τe − τ 1

2
indicates

that competition between the antidote and the virus is only
fierce for a short period of time, and the larger portion
of extinction time is spent on extinguishing cornered virus
infections.

From the perspective of connectivity, any other simple
network topology of the same size n has strictly less edges
than the complete graph Kn, as a result of which the undesired
information (virus) will die slower with high probability in
these networks, even with the same initial condition (I0 and
C0). Bases on this observation, we also have the following
lower bounds as a corollary of Theorem 1.

Corollary 1: For an SIC epidemic with curing rate γ on an
arbitrary network G of size n, the expected extinction time
and half-life time of the virus can be bounded below as

E(τe) ≥ 1
γn

[HC0+I0−1 −HC0−1 + Hn−C0 −Hn−C0−I0

]
,

(10)

E(τ 1
2
) ≥ 1

γn

[HC0+�I0/2�−1 −HC0−1 + Hn−C0

−Hn−C0−�I0/2�
]
, (11)

where Hk =
∑k

j=1
1
j is the k-th Harmonic Number.

Proof of Corollary 1 can be found in Appendix B.

B. SIC Epidemics on Star Networks Sn

As opposed to the most densely connected complete net-
work Kn, a star network Sn is composed of a hub v1 and
n − 1 leaves (peripheral vertices), such that every piece of
information from a leaf vertex has to go through the hub
to reach another vertex. In other words, edges only exists
between the hub and leaves, creating a huge bottleneck in the
middle, which can be viewed as a high-degree of heterogeneity
among vertices. The star topology is also of great importance,
due to its natural link to artificial structures, e.g., a WiFi
access network within the coverage of an access point, and
the ego-network of a high-degree node in OSNs.

Consider the same SIC dynamic with infection rate β and
curing rate γ on a star Sn. In an extreme case, if a copy of
antidote is first given to the hub, then infection count I(t)
will be monotonically decreasing with time t, which is less
interesting, because it is impossible for the virus to claim new
victims, and hence no competition. Therefore, we consider
the case that antidotes can only be distributed to peripheral
vertices at time 0, and present the following upper bounds.

Theorem 2: For an SIC dynamics on a start network in
which the initial infection count satisfies I0 ≥ 2, the expected
extinction time E(τe) and half-life E(τ 1

2
) follow upper bounds:

E(τe) <
1
γ

[
1

C0
+ 1 + ln(I0 − 1) +

β

γC0(I0 − 1)

]
, (12)

E(τ 1
2
) <

1
γ

[ 1
C0

+ 1 + ln(
I0 − 1

I0/2�) +

β

γC0(I0 − 1)
]
. (13)

Proof of Theorem 2 can be found in Appendix C.
It is intuitive that the undesired information (virus) will die

slower in a star network than in a complete network of the
same size, due to the much sparser connections. However,
it is rather interesting to observe from Theorem 2 that, both
the expected extinction time and half-life time increases with
the network size n in the star topology. This clear contrast
between the two topologies leads to a conjecture: existence
of bottlenecks changes how the network size impacts when
and how fast the virus dies out. In addition to this difference,
we also observe a similarity with SIC epidemics on the
complete network, that is, the half-life time of the virus in
a star network also decreases with the initial infection count
I0, but with a milder decreasing slope, as O( 1

I0
).

C. Numerical Simulation and Discussion

To validate upper bounds (dashed lines) in Theorem 1 and
Theorem 2, numerical results (solid lines with markers) with
respect to network size n and the initial infection count I0 are
shown in Fig. 4 and Fig. 5-6 respectively. As can be seen from
all three figures, trends of both the expected extinction time
and half-life time are well captured by the derived bounds.
Comparing the bounds and simulation results for the two
simple topologies, we highlight the following observations.
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1) Propagation Parameters β and γ: The infection/curing
rates have the same effect on both temporal metrics regardless
of network topology, which can be observed by comparing
the sub-figures in Fig. 5 and Fig. 6. To be more specific, they
only lengthen or shorten time intervals between events, but
does not change the order of event occurrences, resulting in a
homogeneous scaling effect on both lifetime metrics.

2) Network Size n: There is a clear dichotomy in the
dying speed of the virus with respect to the network size
n, that is, virus dies faster in a larger complete network,
but dies slower in a larger star network, as shown in the
semi-log plots of Fig. 4. Both E(τe) and E(τ 1

2
) are O( log n

n )
for complete networks (decreasing blue lines), while both are
O(log n) for star networks (increasing red lines), as indicated
by Theorem 1 and Theorem 2, respectively. This implies an
interesting change in the conflicting information propagation
process, when a hub (bottleneck) emerges in the network.

3) Initial Infection Count I0: Impact of I0 on the lifetime
of the virus is shown in Fig. 5 and 6, for complete network
K100 and star network S100, respectively. The mild zig-zag
pattern of the half-life time (left end of all blue solid lines
with markers) is caused by rounding-off the threshold � 1

I0


when I0 is small. Though the general trend is the same in
both types of networks, i.e., extinction time increases with I0,
while half-life time decreases with I0, impact of topology is
still apparent, as indicated by the different scaling behavior
over I0 (black texts in Fig. 5 and 6).

As two extremes of network topology, the complete graph
is regular (every vertex has the same degree) and most densely
connected (|E| = n(n−1)

2 ), while the star graph is highly
irregular (due to the existence of the central hub) and sparse
(|E| = n − 1). Comparing the two, we observe when edges
concentrate and form a bottleneck in the network, the impact
of network size n and initial condition I0 changes drastically.
Though results in these two simple networks do not directly
apply to general cases, they shed lights on studying conflicting
information propagation in general networks, by recognizing
the importance of bottlenecks in networks.

IV. CONFLICTING INFORMATION PROPAGATION IN

NETWORKS WITH ARBITRARY TOPOLOGY

Considering the broad application scenarios of conflicting
information propagation, it is possible, and even more likely,
that the underlying network G does not have nice topological
properties like regularity, and is hence a complex network
with unique topologies. To study when and how fast the
undesired information dies out in such networks, we examine
graph metrics, namely, the Cheeger constant η(G) and vertex
eccentricities {�(v)}v∈V , to quantitatively link topological
properties to the lifetime metrics (E(τe) and E(τ 1

2
)) of the

virus in an SIC epidemics through upper bounds.

A. Bounds by Considering the Edge-Expansion Property

Recall in the comparison between complete networks and
star networks, we find that the key to propagation behavior
change is the central hub of a star, which forms a bottleneck
in the network. Therefore, we first consider the metric that

Fig. 4. Expected extinction time E(τe) and half-life time E(τ 1
2
) of an SIC

epidemics (C0 = 1, I0 = 10), with respect to the network size n. In this
simulation, we set the infection(β) and curing (γ) rates as β = γ = 0.01 in
the star network Sn, and β = γ = 0.0001 in the complete network Kn, for
a clearer comparison between the two topologies.

quantitatively measures the level of ‘bottleneckness’ of a
network G, the Cheeger constant η(G), which is defined as
η(G) := inf

S⊂V,|S|≤n/2

|δ(S)|
|S| , where δ(S) := [S,V \ S] is the

edge-cut of vertex set S, that is, the set of boundary edges
between set S and its compliment set V \ S.

As a graph expansion property [22], η(G) identifies the
‘narrowest’ part of network G, i.e., the minimum boundary
edges of as many as vertices. Intuitively, the larger the
boundary set, the more difficult it is to break the network
into isolated components by disconnecting edges, so η(G)
and other expansion properties are viewed as indicators of
robustness, and hence studied in many applications [22].
Due to this property, it has been shown that η(G) is of
key importance to the spreading behavior of an epidemic
process, under different propagation models, including SI [13],
[23], SIS [13], and SIR [11] models. For the proposed SIC
propagation model, in which two epidemic processes compete
in finite time, we show in the following theorem that both the
expected extinction time and half-life time are O( log n

γη(G) ).
Theorem 3: For a network G with Cheeger constant η(G),

given the initial cured count C0, the extinction time of the
virus in an SIC epidemic with curing rate γ can be bounded
above by

E(τe) ≤ 1
γη(G)

[a ln(n + b) + c], (14)

1) If 1 ≤ C0 < n/2, b = 0, and
when C0 = 1, a = 2

ln2 , c = 2γE ,
otherwise a = 2

ln 4(C0−1) , c = −[ 4C0−5
8(C0−1)2 + γE

]
;

2) If C0 ≥ n/2, a = 1, b = −C0 +1, c = 1
2(n−C0+1) +γE ,

where γE � 0.577 is the Euler-Mascheroni constant.
When the initial infection count I0 is given, the expected

half-life time can be upper bounded2 when 2 ≤ C0 < n/2,

E(τ 1
2
)≤ 1

γη(G)

[
ln

n2

2(C0 − 1)I0
− 4C0 − 5

8(C0 − 1)2
+

2I0 + 1
I2
0

]
,

(15)

2For the case of C0 > n/2, it is with high probability that τ 1
2

= 0, which
is a less interesting case and hence not discussed.
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Fig. 5. Extinction time E(τe) and Half-life time E(τ 1
2
) in the complete graph K100, over the initial infection count I0.

Fig. 6. Extinction time E(τe) and Half-life time E(τ 1
2
) in the star network S100, over the initial infection count I0.

and when C0 = 1, E(τ 1
2
) ≤ 1

γη(G)

[
ln n2

2I0
+ 2I0+1

I2
0

]
.

Proof: Let Vk := {V |V ⊂ V , |V | = k} be the set of all
vertex sets containing k vertices from the network G(V , E).
Let Ck ∈ Vk be the set of cured k vertices when C(t) = k.
Let Tk := inf{t|C(t) = k} be the time that the cured count
C(t) reaches k. Note that C(t) is monotonically increasing,
and C(0) = C0, TC0 = 0. For any k ≥ C0,

E(Tk+1 − Tk) =
∑

A⊂Vk

E

(
Tk+1−Tk|C(t) = A)P(C(t) = A

)
= E

(
1

γ|δ(Ck)|
)

, (16)

where δ(Ck) := [Ck,V \ Ck] is the edge cut of set Ck, and

|δ(Ck)| ≥
{

η(G)k, k < n
2 ,

η(G)(n − k), k ≥ n
2 .

Also, we have E(τe) ≤ ∑n−1
k=C0

E(Tk+1 − Tk) from
Lemma 3 in the Appendix. So when 2 ≤ C0 < n

2 , the expected

extinction time can be upper bounded by

E(τe) ≤
n/2∑

k=C0

1
γη(G)k

+
n−1∑

k= n
2 +1

1
γη(G)(n − k)

=
1

γη(G)

(
2Hn

2
− 2

n
−HC0−1

)
Franel

<
1

γη(G)

[
ln

n2

4(C0 − 1)
− 4C0 − 5

8(C0 − 1)2
− γE

]
,

where the last line follows from Franel’s Inequality [24].
Similarly, the expected half-life time can be bounded by

E(τ 1
2
) ≤

n/2∑
k=C0

1
γη(G)k

+
n−1−�I0/2�∑

k= n
2 +1

1
γη(G)(n − k)

.

As for the case of C0 ≥ n
2 , the upper bound can be obtained

by considering E(τe) ≤
∑n−1

k=C0

1
γη(G)(n−k) .

Though not a sharp bound, Theorem 3 confirms the impor-
tance of the edge-expansion property, i.e., the Cheeger con-
stant η(G), in epidemic spreading of information, particularly
two pieces of conflicting information in this paper. As can
be seen, the more ‘expandable’ (strong connectivity with
less vertices, towards the clique topology), the less time it
takes to eliminate the virus, which explains the shorter rumor
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circulation time [25] than before, as OSNs (and Internet at
large) become more connected nowadays. Particularly for the
two simple network topologies, clique and star, studied in the
previous section, Theorem 3 clearly explains the dichotomy
of the scaling laws over the network size n: i) η(Kn) =
n/2 = O(n), which implies the O( log n

n ) scaling for the
complete network Kn; while ii) η(Sn) = O(1) for the star
network Sn, and hence the O(log n) increasing over network
size n.

For some large networks with special topological proper-
ties [22], existing results on its edge expansion properties
allow us to estimate the lifetime of the undesired information
in such networks as the network grow in size. For instance,
Krishnasamy et.al. showed that for random graphs (Erdös-
Rényi graphs) G(n, p) with p > 32 log n

4 , there is a high
probability (over 1 − 1

n2 ) that η(G) ≥ np
4 [13, Corollary 2].

Applying Theorem 3, we know that the undesired information
dies out in O( logn

γn ) time with high probability.
For a complex network with arbitrary topology, however,

obtaining the Cheeger constant is a well-known hard problem
(NP-hard [26]), especially when the network is large. In this
case, η(G) can be bounded by the Cheeger Inequality [22],
[27], λ1

2 ≤ η(G) ≤ 2
√

λ1, where λ1 is the second smallest
eigenvalue of the graph Laplacian3 of network G. As we
will show in the simulation later, λ1

2 does not always lead
to a tight bound of the extinction time, so next we con-
sider properties that are more accessible for general large
networks.

B. Bounds by Considering Vertex Eccentricity

Recall in Theorem 2, after the hub of a star network is
cured, the extinction time of the virus is bounded by the last
curing event of an infected peripheral vertex, which depends
on the longest time it takes a copy of antidote to pass though
multiple hub-peripheral paths of length 1. In a general network
G, if we view every initially cured vertex v ∈ C(0) as a
‘hub’, the extinction time also depends on such hub-peripheral
paths, whose lengths are measured in hop-count distances
dist(·, ·). In practice, distance between two vertices is easy
to obtain, and is therefore widely used in various applications,
such as routing and influential node detection. Based on this
graph metric, the eccentricity of a vertex v in network G is
defined as the longest distance of between v and any other
vertex in V , that is, �G(v) := maxu∈V distG(u, v), and the
diameter of network G is defined as the largest eccentricity,
i.e., diam(G) := maxv∈V �G(v).

As the first step, consider the case that a single copy of
antidote is distributed to vertex c ∈ V at time 0, i.e. C0 = {c}.
Then propagation time of the antidote to any specific vertex i
can be bounded by the following lemma.

3Let A denote the adjacency matrix of G. The graph Laplacian of G
is defined as L(G) = diag( �D) − A, where �D is the degree sequence
of G, and diag( �D) is the diagonal matrix with �D as its main diagonal.
Since G is undirected and connected, its Laplacian L(G) is symmetric and
positive-semidefinite, and has n non-negative real eigenvalues. Among these,
the second smallest eigenvalue λ1, referred to as the algebraic connectivity,
measures the expanding property of G. Particularly, the lower bound of η(G)
is referred to as the Buser Inequality.

Lemma 1: Let Tc,i denote the time that vertex i gets a copy
of the antidote originated from vertex c ∈ C0. We have

E(Tc,i) ≤ dist(c, i)
γ

, (17)

Proof: Let {Pk}K
k=1 denote the set of paths between vertex

c and i, such that their lengths are in an ascending order, i.e.,
lk ≤ lk+1. For any 1 ≤ k ≤ K , we have

distG(c, i) ≤ l1 ≤ lk ≤ lK . (18)

Consequently, the curing time Tc,i of vertex i (by the antidote
originated from vertex c) can be re-written as

Tc,i = min
1≤k≤K

T k
c,i ≤ T 1

c,i, (19)

where T k
c,i is the attempted curing time of vertex i, by the

antidote copy originated from c, and transmitted along path
Pk. For every k, time T k

c,i is the sum of lk i.i.d. Exponential
r.v.’s with mean 1

γ , as a result of which r.v. T k
c,i satisfies

Gamma distribution, i.e., T k
c,i ∼ Γ(lk, γ), with mean μk = lk

γ

and variance σ2
k = lk

γ2 . Then the upper bound in (17) can be
obtained through (18) because

E(Tc,i) = E( min
1≤k≤K

T k
c,i) ≤ min

1≤k≤K
E(T k

c,i) =
l1
γ

, (20)

where l1 = distG(c, i) is the length of the shortest path
between vertex c and vertex i in graph G.

Lemma 1 provides an upper bound of the expected antidote
dissemination time from a designated vertex c to vertex i,
which is also an upper bound of the curing time of vertex i,
if c ∈ C(0). To better facilitate the analysis of the extinction
time, we first provide a technical lemma on the maximum and
minimum of multiple Gamma r.v.’s.

Lemma 2: Let Xn = min1≤i≤n Xi be the minimum of n
r.v.’s, and Xn = max1≤i≤n Xi be the maximum of them,
where each Xi ∼ Γ(ki, θi), where θi’s are the rate parameters.
Then E(Xn) and E(Xn) are bounded:

E(Xn) ≤ max
i

{
ki

θi

}
+

(
n − 1

n

n∑
i=1

ki

θ2
i

)1/2

, (21)

E(Xn) ≥ min
i

{
ki

θi

}
−
(

n − 1
n

n∑
i=1

ki

θ2
i

)1/2

. (22)

When ki = k and θi = θ for every 1 ≤ i ≤ n such that
{Xi}i are a set of i.i.d Gamma r.v.’s, tighter bounds exist:

E(Xn) ≤ 2 lnn

θ(1 − n−1/k)
, (23)

E(Xn) ≥ k ln 2 − ln n

θ
. (24)

Proof: Equation (21) and (22) follow from [28, Theo-
rem 2.1] and [28, Corollary 2.1] by substituting the mean
μi = E(Xi) = ki

θi
and variance σ2

i = ki

θ2
i

of Gamma
distributions.

For the i.i.d case, (23) is proved in [29, Eq. (7)]. Now
we prove the lower bound in (24). Let r.v. Yi = −Xi,
then Xn = mini Xi = −maxi Yi � Yn. The moment
generating function (MGF) of r.v. Yi can be derived as
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Fig. 7. An example of contracting cured set C0 into vertex f(C0). In the
quotient graph GC0 , there is K∗

G/C0
= 1 path of length εGC0

(f(C0)) = 3

from f(C0) to vertex v7, and K ′ = 1.

MY (t) = MX(−t) = (1 + t
θ )−k, where t < θ as required

by MGF MX(t) of r.v. Xi.
Let set D(M) = {t ≥ 0|MY (t) ≥ 1}. Then with the

technique from [29, Eq. (6)], we have

E(Yn) ≤ inf
t∈D(M)

1
t

[ln n + ln MY (t)]

≤ 1
t

[
ln n − k ln(1 +

t

θ
)
]

� g(t),

which is true for every t ∈ [0, θ). Notice that g(t) is
monotonically decreasing in [0, θ], so a tighter bound of E(Yn)
can be upper derived as g(θ). Then (22) follows from the fact
that E(Xn) = −E(Yn) ≥ −g(θ).

Based on Lemma 1 and Lemma 2, the extinction time
of the undesired information can be analyzed with graph
augmentation, as illustrated in the following theorem.

Theorem 4: Let �G(v) denote the eccentricity of vertex v in
graph G. Let GV (V/V, E �) denote the resulting graph induced
by contracting vertices in set V ⊂ V to a single vertex f(V ),
and removing all multiple edges.4 Given that antidotes are
distributed to the set C0 at time t = 0, The expected extinction
time τe of the virus can be upper bounded by

E(τe) ≤ 1
γ

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
2 ln K∗

G/C0

1−(K∗
G/C0

)
− 1

εGC0
(f(C0))

, if �GC0
(f(C0)) ≤ 10,

�GC0
(f(C0)) +

√
(Ks − 1)�GC0

(f(C0)),

in general,

(25)

where K∗
G/C0

is the number of longest shortest paths starting
from f(C0) in the quotient graph GV (V/V, E �), and Ks ≥
K∗

G/C0
+ 1 is the number of shortest paths that start from

f(C0), and are longer than �GC0
(f(C0)) − s.

Proof: For an SIC dynamics on graph G, the extinction
time of the virus can be bounded by

max
i∈I0

{
min
c∈C0

Tc,i

}
≤ τe ≤ max

i∈V\C0

{
min
c∈C0

Tc,i

}
. (26)

First we show when C0 ≥ 2, the extinction time τe on the
original graph G is upper bounded by the extinction time τ̂e

of the SIC epidemic on the quotient graph GC0 , in which one
unit of antidote is distributed to vertex f(C0) at time t = 0.

4Graph GV is the quotient graph of G through an equivalence relationship
induced by partition {V, {v1}, {v2}, · · · } where vi ∈ V \ V , so that its
vertex set V/V = (V \ V ) ∪ f(V ) has |V| − |V | + 1 vertices.

Fig. 8. Probability P(X ≤ Y ) for k + s (≤ graph diameter diam(G))
ranging from 5 to 20.

An example of the graph contraction procedure is shown
in Fig. 7. Consider vertex v1, v4 ∈ C0. Evolution of the
SIC epidemic (spread of virus and antidote) will not be
affected by adding an edge (v1, v4) to G, no matter such edge
(v1, v4) exists in G or not. This is because: i) transmission
of antidotes between any vertex pair is independent with
transmission actions between others; and ii) transmission of
antidote between u and v will not result in any state change.
Since v1 and v4 will stay in cured state forever, we can
combine and contract them into one vertex f({v1, v4}) and
keep all their edges in G, without affecting the evolution
process. The contraction process may result in multiple edges,
by removing which the extinction time may increase. Then
by induction on the contraction of C0, the extinction time
τe ≤ τ̂e, which is the extinction time of the virus on quotient
graph GC0 .

Therefore, it is sufficient to consider the SIC epidemic on
graph GC0 , with one unit of antidote distributed to f(C0) at
time t = 0. Then we have the following inequality,

τe ≤ τ̂e := max
i∈V\C0

Tf(C0),i ≤ max
i∈V\C0

T 1
f(C0),i

, (27)

where T 1
f(C0),i

∼ Γ
(
distGC0

(f(C0), i), γ
)
. The last inequality

of (27) follows from (19) in Lemma 1. Next we discuss
maxi∈V\C0 T 1

f(C0),i
and the eccentricity �GC0

(f(C0)) of the
central cured hub f(C0).

By definition, distance between any vertex i and the cured
hub f(C0) satisfies

distGC0
(f(C0), i) ≤ �GC0

(f(C0)) ≤ diam(GC0) ≤ diam(G).
(28)

Without loss of generality, suppose �GC0
(f(C0)) = k +

s is achieved by the path from f(C0) to vertex u in
the quotient graph GC0 . Consider infected vertex i that
is distGC0

(i, f(C0)) = k hops away from the cured
hub f(C0), such that s ≥ 1. Let r.v. X and Y denote
the time it takes a copy of antidote to reach vertex u
and v from the hub f(C0), respectively. We first show that
when k + s is small, the probability that r.v. X ≤ Y is
small.

Clearly, X ∼ Γ(k + s, θ) and Y ∼ Γ(k, θ), where θ is
the rate parameter, and equals to the curing rate γ in our
model. As a result, r.v. X

X+Y satisfies Beta distribution with
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Fig. 9. Bounds and simulation of the extinction time E(τe) in the general network group of small sizes (n � 1000). The curing rate γ in the SF-s scenario
is increased to avoid a lenthy simulation in a sparse graph (with less edges) like SF-s.

TABLE I

STATISTICS OF NETWORKS USED IN SIMULATION

parameters k + s and k, and

P(X ≤ Y ) = P(
X

X + Y
≤ 0.5)

=
Γ(2k + s)

Γ(k + s)Γ(k)

∫ 0.5

0

tk+s−1(1 − t)k−1dt,

(29)

where Γ(k) =
∫∞
0 xk−1e−xdx is the Gamma function. It is

difficult to bound (29) due to the integral, so we plot this
probability for k and s values in Fig. 8, such that k+s reflects
the range of diameter for frequently5 seen networks.

In Fig. 8, the dashed vertical lines identify the diameter
diam(G) of five networks used for simulation validation,
whose statistics are shown in Table I. When k + s ≤
diam(G) ≤ 10, the probability that the antidote will reach
u sooner than i, who is s-hops closer than u from f(C0) is
small (< 0.2) when s ≥ 3. In addition, the rate parameter θ of
the Gamma distribution equals to the curing rate γ, so when
γ is also small, the gap between the two time intervals Y
and X is therefore small as well, such that we only need
to consider vertices who are located the furthest from vertex
f(C0) in graph GC0 , i.e., the K∗

G/C0
distinct vertices, such as u,

satisfying distGC0
(f(C0), i) = �GC0

(f(C0)). Then the first line
on the right-hand side of (25) follows from the tighter upper
bound (23) in Lemma 2. Note that when K∗

G/C0
= 1, the first

term is not well-defined, because the denominator equals to 0.

In this case, we take E(τe) ≤ 	GC0
(f(C0))

γ instead.

5In most networks we consider (see Table I for detailed statistics), the net-
work diameter diam(G) = O(log |V|) is small due to the small-world effect,
so probability P(X ≤ Y ) in (29) is also small.

If this condition is not satisfied, e.g., when diam(G) is large,
such that P(X ≤ Y ) can not be omitted, we always have
the option to consider more paths, which are possibly shorter,
to upper bound the extinction time. Then the upper bound
(second line in (25)) follows from the upper bound for general
distributions, as described in (21) of Lemma 2.

Note that the eccentricity �GC0
(f(C0)) is a property of the

augmented quotient graph GC0 . To apply Theorem 4, we need
to know the exact locations (vertices) where copies of antidotes
are disseminated, i.e., set C0. If such knowledge is not readily
available, the extinction time can still be bounded by the diam-
eter (or more generally, distribution of vertex eccentricities) of
graph G, as given in the following two corollaries. Proofs of
Corollary 2 and 4 are simple as they directly follow from the
fact that �GC0

(f(C0)) ≤ minc∈C0 �G(c) ≤ diam(G).
Corollary 2: Particularly when C0 = 1, for any initial

antidote recipient c ∈ V ,

E(τe) ≤ 1
γ

[
diam(G) +

√
diam(G)(|Peri(G)|/2 − 1)

]
,

(30)

where diam(G) is the diameter of G, and Peri(G) = {v ∈
V | �(v) = diam(G)} is the set of peripheral vetices in G.

Corollary 2 is also an upper bound of the expected extinc-
tion time E(τe) for the case of C0 > 1, because the more
copies of antidote distributed initially at t = 0, the less
time it takes to fully remove virus from the network, i.e.,
a shorter extinction time. A direct implication of Corollary 2
is that for small-world graphs, which naturally emerges in
various contexts, such as social networks, the extinction time is
O( log n

γ ), due to the O(log n) scaling of the network diameter.
Though not a tight bound compared to Theorem 3, this corol-
lary is much more accessible, especially for large networks.
Obtaining the eccentricity distribution of a graph, including
diameter and peripheral size, is at most O(n|E|) in time
complexity with further speedups [30], which is much faster
than obtaining the Cheeger constant η(G). By the eccentricity
distribution and the initial cured count C0, a more accurate
upper bound can be derived as follows.

Corollary 3: Suppose vertices in C0 are chosen uniformly
at random from V , and CDF of the eccentricity distribution
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Fig. 10. Bounds and simulation of the extinction time E(τe) in the general network group of large sizes (n � 22000).

of graph G is F (x) (radi(G) ≤ x ≤ diam(G)). The expected
extinction time can be upper bounded by

E(τe) ≤ 1
γ

[
μC0 +

√
μC0

(
n − C0

diam(G)
− 1

)]
, (31)

where μC0 =
∑diam(G)

k=radi(G) k[1 − F (k)]C0 is the expected
maximum eccentricity of vertices in the cured set C0.

Corollary 3 also stems from Theorem 4, by consider-
ing the expected maximum eccentricity of the C0 antidote
recipients in C0, if antidotes are randomly distributed at
time 0. Specifically, for any vertex v ∈ V \ C0, the distance
between i and vertex f(C0) in the quotient graph GC0 sat-
isfies distGC0

(f(C0), v) ≤ �GC0
(f(C0)) ≤ minc∈C0 �G(c) ≤

diam(G), which is the diameter of the original graph G.
Changing perspective to the initial infected set I0, which

contains all infected vertices at time 0, the expected extinction
time E(τe) can be bounded below by considering the shortest
paths between vertices in set I0 and set C0.

Corollary 4: Given the initial infected set I0 = I(t = 0),
the expected extinction time can be lower bounded by

E(τe) ≥ 1
γ

[
dist(C0, i

∗) ln 2 − lnKi∗
]
, (32)

where dist(C0, i) = minc∈C0{dist(c, i)} denotes the
shortest distance between set C0 and vertex i, i∗ =
arg max

i∈I0

{dist(C0, i)}, and Ki∗ is the number of shortest

paths6 between set C0 and vertex i∗.
Proof: From (26), we have

τe ≥ max
i∈I0

{
min
c∈C0

Tc,i

}
≥ min

c∈C0
Tc,i∗ , (33)

where Tc,i∗ = min1≤k≤Ki∗ T k
c,i∗ is the minimum of Ki∗

i.i.d. Gamma r.v.’s, and each T k
c,i∗∼ (dist(C0, i), 1

γ ), which
comes from Lemma 1. Then the lower bound in (32) follows
immediately from (24) in Lemma 2.

6In practice, obtaining quantity Ki∗ requires executing path searches
repetitively. To avoid high computation load in the simulation, we use the
upper bound of Ki∗ , that is, |{i ∈ I0|dist(C0, i) = dist(C0, i∗)}| when
evaluating the lower bound in Corollary 4.

C. Validation in Synthetic and Real-World Networks

To validate the derived bounds, especially the extinction
time of the undesired information, we test the derived bounds
in five networks of three different topologies: the Erdös-Rényi
(random graph) topology, including ER-s (edge connecting
probability p = 7.50 × 10−3) and ER-l (p = 6.76 × 10−4);
the scale-free topology, including SF-s (generated with the
Barabási–Albert model); and real world fractions of Facebook,
FB-s (Dataset No. 107 from [31]) and FB-l7 (webgraph
from [32]). Their statistics are presented in Table I, in which
the networks are grouped into two sets, as indicated by the
‘-s’ (size n � 1000) and ‘-l’ (size n � 22000) suffixes.

In Fig. 9 and Fig. 10, the simulated extinction time are
shown in grey dots, whose mean E(τe) is identified by blue
‘×’ markers. Each instance along the x-axis corresponds to the
same initial cured set C0 and infected set I0, which is realized
100 times to obtain E(τe). The red round markers and black
squares markers correspond to the upper bounds in Theorem 4
and Corollary 4, respectively, both of which are determined by
vertex eccentricities. The red dashed line and green lines with
triangle markers correspond to the upper bounds presented
in Corollary 2 that relies on network diameter diam(G), and
Theorem 3 that relies on the Cheeger constant,8 respectively.

We highlight the following observations:
1) Topological Properties: The small diameter diam(G) and

the relatively large algebraic connectivity λ1 of the random
graph topology (ER-s, ER-l) indicate that they are much
more ‘regular’ than SF-s, FB-s, and FB-l, in the sense that
vertices differ less in degree, centrality, etc. (indicating dif-
ferent importance/influential in status of individuals). As a
result, the expected extinction time E(τe) varies less violently
in Fig. 9(a), Fig. 10(a), and Fig. 10(b).

7The actual FB-l network used in simulation has 238 less vertices than the
original dataset, as can be seen from Table I, because isolated vertices are
removed to avoid the case of infinite extinction time (τe = ∞).

8Approximating the Cheeger constant η(G) with the lower bound λ1
2

results
in a very loose bound of E(τe) in smaller networks and FB-l, so the upper
bound (solid green line) is not shown in Fig. 9 or Fig.10(c). The dashed
green lines correspond to the upper bound in Cheeger’s Inequality η(G) ≤
2
√

λ1, which are presented to make a comparison with bounds based on
eccentricities, hence the star sign in the legend.
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Fig. 11. Effectiveness of antidote distribution strategies based on betweenness
centrality and vertex degree (I0 = 150).

Despite differences in average degree d̄ and algebraic con-
nectivity λ1, the similarity in vertex eccentricity properties
(diameter and radius) between ER-s and and FB-s leads to the
same range of extinction time in Fig. 9(a) and Fig. 9(c), which
indicates the usefulness of Corollary 2 and Corollary 4.

Due to the relatively large diameter diam(G) of SF-s and
FB-l, the probability in (29) can not be neglected, so the first
condition of (25)) in Theorem 4 does not hold. However,
the second condition still holds, and leads to tight bounds (red
round markers) in Fig. 9(b) and Fig. 10(c).

2) Tightness of the Bounds: Corollary 2 (dashed red lines)
that relies only on network diameter diam(G) is an easy-
to-obtain, but not tight upper bound. Theorem 4 (round red
markers) and Corollary 4 (black square markers) are tighter in
the less ‘regular’ SF-s, FB-s, and FB-l, due to the existence
of few ‘dominant’ longest shortest paths, i.e., K∗ is small.

In contrast, for the ER-s and ER-l newtork, vertex degrees
and pair-wise distances are highly homogeneous (small vari-
ance in degree distribution), resulting in a large K∗ that
affects the tightness of both the upper and lower bounds by
eccentricities. This is especially true when the initial cured
count C0 is large, e.g., in Fig. 10(a). In this case, further upper
bounding Theorem 3 by setting η(G) = λ1

2 (solid green lines
with triangle markers) proves to be a tighter bound.

However, Theorem 3 that relies on the Cheeger constant
η(G), or more accurately, the algebraic connectivity λ1,
becomes less effective than Theorem 4, when the initial cured
count C0 decreases, as shown in Fig. 10(b). This effect is more
obvious in smaller networks (Fig. 9), where even the maximum
possible value η(G) = 2

√
λ1 of the Cheeger Constant (dotted

green lines) are not tight, especially in SF-s and FB-s.

D. Implication on Antidote Distribution

From the proof of Theorem 4, another implication is that,
the extinction time of the undesired information can be
bounded by the number and the length of shortest paths,
which go through vertices of the initial cured set C0. This
observation sheds light on antidote distribution (injection
of desired information), when used as a counter-measure
against the epidemic spreading of undesired information.
A general guideline on selecting vertices for set C0 is to
choose vertices that sit on the most number of shortest paths,
i.e., vertices with high betweenness centrality. We test this

strategy on a portion of Facebook with 324 vertices, as illus-
trated in Fig. 11. Compare it with the distribution strategy
based on degree (dotted blue line with triangle markers),
adopting the betweenness centrality metric (solid red line with
round markers) as guideline can drastically reduce both the
extinction time and the half-life time, which indicates that the
undesired information is effectively controlled (shorter half-
life) and quickly exterminated (shorter extinction time).

V. CONCLUSION

In this paper, we studied conflicting information propagation
in networks. Motivated by examples in social networks, com-
puter networks, and IoT, we introduced a Susceptible-Infected-
Cured epidemic model, to capture the transient competition
between the desired and undesired information. Our model
allowed us to examine the impact of network topology, prop-
agation intensity, and the initial condition on the propagation
processes of both pieces of information, such that short-term
behaviors of the dynamics, namely, the lifetime of the unde-
sired information can be characterized.

Our analysis, validated by simulation in network of various
topologies, provided insights on the transient evolution of such
network dynamics. For instance, the derived bounds revealed
the level of ‘bottleneckness’ in a network may lead to different,
even contrasting scaling behavior of information’s lifetime,
with respect to the size of a network. Our findings on the
impact of network topology and initial condition permitted
the estimation of information lifetime before the dynamics
unfolds, and can guide information distributor to efficiently
allocate the limited resource to minimize the the impact of
the undesired information on individuals. For example, a com-
puter network operator who aims to effectively exterminate a
spreading virus by distributing security patches, may first give
patches to computers that locate on the most shortest paths,
instead of computers with the most connections.

There are several directions that can be explored to further
our understanding on the network dynamics of conflicting
information propagation: The virus-antidote model can be
generalized to allow semi-conflicting information pairs, such
that the more complex competition between half-rumor and
half-truth can be examined. The analysis can be extended to
include multiple epochs of short-term competition, such that
the best time to inject conflicting information can be studied.
In addition, the decay of propagation intensity (popularity
of information) over time can also be introduced to more
accurately investigate this transient dynamics in finer temporal
grains. We hope that our model and findings contribute to the
knowledge of information propagation, and they serve as the
foundation and motivation for future research in this direction.
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